Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
1.
bioRxiv ; 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38659743

ABSTRACT

INTRODUCTION: Multi-omics studies in Alzheimer's disease (AD) revealed many potential disease pathways and therapeutic targets. Despite their promise of precision medicine, these studies lacked African Americans (AA) and Latin Americans (LA), who are disproportionately affected by AD. METHODS: To bridge this gap, Accelerating Medicines Partnership in AD (AMP-AD) expanded brain multi-omics profiling to multi-ethnic donors. RESULTS: We generated multi-omics data and curated and harmonized phenotypic data from AA (n=306), LA (n=326), or AA and LA (n=4) brain donors plus Non-Hispanic White (n=252) and other (n=20) ethnic groups, to establish a foundational dataset enriched for AA and LA participants. This study describes the data available to the research community, including transcriptome from three brain regions, whole genome sequence, and proteome measures. DISCUSSION: Inclusion of traditionally underrepresented groups in multi-omics studies is essential to discover the full spectrum of precision medicine targets that will be pertinent to all populations affected with AD.

2.
Clin Chem ; 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38527221

ABSTRACT

BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) is mainly caused by heterogeneous variants in the PKD1 and PKD2 genes. Genetic analysis of PKD1 has been challenging due to homology with 6 PKD1 pseudogenes and high GC content. METHODS: A single-tube multiplex long-range-PCR and long-read sequencing-based assay termed "comprehensive analysis of ADPKD" (CAPKD) was developed and evaluated in 170 unrelated patients by comparing to control methods including next-generation sequencing (NGS) and multiplex ligation-dependent probe amplification. RESULTS: CAPKD achieved highly specific analysis of PKD1 with a residual noise ratio of 0.05% for the 6 pseudogenes combined. CAPKD identified PKD1 and PKD2 variants (ranging from variants of uncertain significance to pathogenic) in 160 out of the 170 patients, including 151 single-nucleotide variants (SNVs) and insertion-deletion variants (indels), 6 large deletions, and one large duplication. Compared to NGS, CAPKD additionally identified 2 PKD1 variants (c.78_96dup and c.10729_10732dup). Overall, CAPKD increased the rate of variant detection from 92.9% (158/170) to 94.1% (160/170), and the rate of diagnosis with pathogenic or likely pathogenic variants from 82.4% (140/170) to 83.5% (142/170). CAPKD also directly determined the cis-/trans-configurations in 11 samples with 2 or 3 SNVs/indels, and the breakpoints of 6 large deletions and one large duplication, including 2 breakpoints in the intron 21 AG-repeat of PKD1, which could only be correctly characterized by aligning to T2T-CHM13. CONCLUSIONS: CAPKD represents a comprehensive and specific assay toward full characterization of PKD1 and PKD2 variants, and improves the genetic diagnosis for ADPKD.

3.
medRxiv ; 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38405911

ABSTRACT

Background: Both genetic variants and epigenetic features contribute to the risk of Alzheimer's disease (AD). We studied the AD association of CpG-related single nucleotide polymorphisms (CGS), which act as the hub of both the genetic and epigenetic effects, in Hispanics decedents and generalized the findings to Non-Hispanic Whites (NHW) decedents. Methods: First, we derived the dosage of the CpG site-creating allele of multiple CGSes in each 1 KB window across the genome and we conducted a sliding window association test with clinical diagnosis of AD in 7,155 Hispanics (3,194 cases and 3,961 controls) using generalized linear mixed models with the adjustment of age, sex, population structure, genomic relationship matrix, and genotyping batches. Next, using methylation and bulk RNA-sequencing data from the dorsolateral pre-frontal cortex in 150 Hispanics brains, we tested the cis- and trans-effects of AD associated CGS on brain DNA methylation to mRNA expression. For the genes with significant cis- and trans-effects, we checked their enriched pathways. Results: We identified six genetic loci in Hispanics with CGS dosage associated with AD at genome-wide significance levels: ADAM20 (Score=55.2, P= 4.06×10 -8 ), between VRTN (Score=-19.6, P= 1.47×10 -8 ) and SYNDIG1L (Score=-37.7, P= 2.25×10 -9 ), SPG7 (16q24.3) (Score=40.5, P= 2.23×10 -8 ), PVRL2 (Score=125.86, P= 1.64×10 -9 ), TOMM40 (Score=-18.58, P= 4.61×10 -8 ), and APOE (Score=75.12, P= 7.26×10 -26 ). CGSes in PVRL2 and APOE were also genome-wide significant in NHW. Except for ADAM20 , CGSes in all the other five loci were associated with Hispanic brain methylation levels (mQTLs) and CGSes in SPG7, PVRL2, and APOE were also mQTLs in NHW. Except for SYNDIG1L ( P =0.08), brain methylation levels in all the other five loci affected downstream RNA expression in the Hispanics ( P <0.05), and methylation at VRTN and TOMM40 were also associated with RNA expression in NHW. Gene expression in these six loci were also regulated by CpG sites in genes that were enriched in the neuron projection and synapse (FDR<0.05). Conclusions: We identified six CpG associated genetic loci associated with AD in Hispanics, harboring both genetic and epigenetic risks. However, their downstream effects on mRNA expression maybe ethnic specific and different from NHW.

4.
bioRxiv ; 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38260408

ABSTRACT

Alzheimer's disease (AD) remains a complex challenge characterized by cognitive decline and memory loss. Genetic variations have emerged as crucial players in the etiology of AD, enabling hope for a better understanding of the disease mechanisms; yet the specific mechanism of action for those genetic variants remain uncertain. Animal models with reminiscent disease pathology could uncover previously uncharacterized roles of these genes. Using CRISPR/Cas9 gene editing, we generated a knockout model for abca7, orthologous to human ABCA7 - an established AD-risk gene. The abca7 +/- zebrafish showed reduced astroglial proliferation, synaptic density, and microglial abundance in response to amyloid beta 42 (Aß42). Single-cell transcriptomics revealed abca7 -dependent neuronal and glial cellular crosstalk through neuropeptide Y (NPY) signaling. The abca7 knockout reduced the expression of npy, bdnf and ngfra , which are required for synaptic integrity and astroglial proliferation. With clinical data in humans, we showed reduced NPY in AD correlates with elevated Braak stage, predicted regulatory interaction between NPY and BDNF , identified genetic variants in NPY associated with AD, found segregation of variants in ABCA7, BDNF and NGFR in AD families, and discovered epigenetic changes in the promoter regions of NPY, NGFR and BDNF in humans with specific single nucleotide polymorphisms in ABCA7 . These results suggest that ABCA7-dependent NPY signaling is required for synaptic integrity, the impairment of which generates a risk factor for AD through compromised brain resilience.

5.
Kidney Int Rep ; 8(11): 2395-2402, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38025241

ABSTRACT

Introduction: In some cases, immunoglobulin (IgA)-mediated antiglomerular basement membrane (anti-GBM) disease has been reported. Whether circulating IgA anti-GBM antibodies affect the clinico-pathologic characteristics and outcome of typical anti-GBM disease deserves further study. Methods: Circulating IgA anti-α3(IV)NC1 antibodies were examined by enzyme-linked immunosorbent assay (ELISA) using recombinant human α3(IV)NC1 as solid phase antigens in 107 patients with anti-GBM disease and 115 controls. Clinical, pathological, and follow-up data of patients were retrospectively analyzed. Results: Circulating IgA anti-α3(IV)NC1 antibodies were found in 18.7% (20/107) of patients with anti-GBM disease but were not detected in healthy controls or in patients with other glomerular diseases. The positivity of circulating IgA anti-α3(IV)NC1 antibodies was not associated with whether the patient was with combined IgA nephropathy or other glomerulonephritis. Kidney immunofluorescence showed no statistical difference in IgA deposition between patients with circulating IgA anti-α3(IV)NC1 antibodies and patients without (30.0% vs. 40.4%, P = 0.725). The titers of circulating immunoglobulin G (IgG) anti-α3(IV)NC1 antibodies in patients with circulating IgA anti-α3(IV)NC1 antibodies were significantly higher than those without (200 [183.3, 200] vs. 161 [85.5, 200] U/ml, P = 0.005). There were no significant differences in kidney outcome and mortality between the 2 groups. Conclusion: Circulating IgA anti-α3(IV)NC1 antibodies occurred in 18.7% (20/107) of patients with anti-GBM in our center and were specific to anti-GBM disease. Patients with circulating IgA anti-α3(IV)NC1 antibodies showed a higher levels of serum IgG anti-α3(IV)NC1 antibodies than those without.

6.
Clin Epigenetics ; 15(1): 173, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37891690

ABSTRACT

BACKGROUND: Insulin resistance (IR) is a major risk factor for Alzheimer's disease (AD) dementia. The mechanisms by which IR predisposes to AD are not well-understood. Epigenetic studies may help identify molecular signatures of IR associated with AD, thus improving our understanding of the biological and regulatory mechanisms linking IR and AD. METHODS: We conducted an epigenome-wide association study of IR, quantified using the homeostatic model assessment of IR (HOMA-IR) and adjusted for body mass index, in 3,167 participants from the Framingham Heart Study (FHS) without type 2 diabetes at the time of blood draw used for methylation measurement. We identified DNA methylation markers associated with IR at the genome-wide level accounting for multiple testing (P < 1.1 × 10-7) and evaluated their association with neurological traits in participants from the FHS (N = 3040) and the Religious Orders Study/Memory and Aging Project (ROSMAP, N = 707). DNA methylation profiles were measured in blood (FHS) or dorsolateral prefrontal cortex (ROSMAP) using the Illumina HumanMethylation450 BeadChip. Linear regressions (ROSMAP) or mixed-effects models accounting for familial relatedness (FHS) adjusted for age, sex, cohort, self-reported race, batch, and cell type proportions were used to assess associations between DNA methylation and neurological traits accounting for multiple testing. RESULTS: We confirmed the strong association of blood DNA methylation with IR at three loci (cg17901584-DHCR24, cg17058475-CPT1A, cg00574958-CPT1A, and cg06500161-ABCG1). In FHS, higher levels of blood DNA methylation at cg00574958 and cg17058475 were both associated with lower IR (P = 2.4 × 10-11 and P = 9.0 × 10-8), larger total brain volumes (P = 0.03 and P = 9.7 × 10-4), and smaller log lateral ventricular volumes (P = 0.07 and P = 0.03). In ROSMAP, higher levels of brain DNA methylation at the same two CPT1A markers were associated with greater risk of cognitive impairment (P = 0.005 and P = 0.02) and higher AD-related indices (CERAD score: P = 5 × 10-4 and 0.001; Braak stage: P = 0.004 and P = 0.01). CONCLUSIONS: Our results suggest potentially distinct epigenetic regulatory mechanisms between peripheral blood and dorsolateral prefrontal cortex tissues underlying IR and AD at CPT1A locus.


Subject(s)
Alzheimer Disease , Diabetes Mellitus, Type 2 , Insulin Resistance , Humans , Alzheimer Disease/genetics , Diabetes Mellitus, Type 2/genetics , DNA Methylation , Epigenesis, Genetic , Genetic Markers , Genome-Wide Association Study/methods , Insulin Resistance/genetics
7.
Kidney Int Rep ; 8(9): 1801-1810, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37705904

ABSTRACT

Introduction: This study aimed to determine the utility of different methods to predict rapid progressors (RPs) and their clinical characteristics in Asia-Pacific patients with autosomal dominant polycystic kidney disease (ADPKD). Methods: This was a multinational retrospective observational cohort study of patients with ADPKD in the Asia-Pacific region. Five hospitals from Australia, China, South Korea, Taiwan, and Turkey participated in this study. RP was defined by European Renal Association-European Dialysis and Transplantation Association (ERA-EDTA) guidelines and compared to slow progressors (SPs). Results: Among 768 patients, 426 patients were RPs. Three hundred six patients met only 1 criterion and 120 patients satisfied multiple criteria for RP. Historical estimated glomerular filtration rate (eGFR) decline fulfilled the criteria for RP in 210 patients. Five patients met the criteria for a historical increase in height-adjusted total kidney volume (TKV). The 210 patients satisfied the criteria for based on kidney volume. During the follow-up period, cyst infections, cyst hemorrhage, and proteinuria occurred more frequently in RP; and 13.9% and 2.1% of RPs and SPs, respectively, progressed to end-stage kidney disease (ESKD). RP criteria based on historical eGFR decline had the strongest correlation with eGFR change over a 2-year follow-up. Conclusion: Various assessment strategies should be used for identifying RPs among Asian-Pacific patients with ADPKD in real-world clinical practice during the follow-up period, cyst infections, cyst hemorrhage, and proteinuria occurred more frequently; and more patients progressed to ESKD in RPs compared with SPs.

8.
Medicine (Baltimore) ; 102(25): e34085, 2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37352072

ABSTRACT

When the similarity of medicinal materials is high and easily confused, the traditional subjective judgment has an impact on the identification results. Use high-dimensional features to identify medicinal materials to ensure the quality of Chinese herbal concoction products and proprietary Chinese medicines. OBJECTIVE: To study the identification algorithm of traditional Chinese medicinals (TCM) microscopic images based on convolutional neural network (CNN) to improve the objectivity and accuracy of microscopic image identification of TCM powders. METHODS: Microscopic image datasets of 4 TCM powders sclereids of Rhizoma Coptidis, Cortex Magnoliae Officinalis, Cortex Phellodendri Chinensis, and Cortex Cinnamomi were constructed, and 400 collected images, as the model training and testing objects, were identified and classified by AlexNet model, VGGNet-16, VGGNet-19, and GoogLeNet model. RESULTS: The average recognition accuracy in the tested microscopic image of AlexNet model, VGGNet-16, VGGNet-19, and the GoogLeNet model is 93.50%, 95.75%, 95.75%, and 97.50% correspondingly. CONCLUSION: The GoogLeNet model has a higher classification accuracy and is the best model to achieve real-time. Applying the CNN to the identification of microscopic images of TCM powders makes the operation of TCM identification simpler and the measurement more accurate while improving repeatability.


Subject(s)
Algorithms , Drugs, Chinese Herbal , Microscopy , Neural Networks, Computer , Powders , Drugs, Chinese Herbal/analysis , Powders/analysis
9.
Cell Mol Biol (Noisy-le-grand) ; 69(2): 138-143, 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-37224033

ABSTRACT

The research was aimed at discussing the effectiveness of ultrasound-guided polymer nanocarriers in the clinical treatment of tumors by chemoradiotherapy and oxidation treatment. Twenty female Balb/cAnN (BALB/C) mice were selected as the research objects in the experiment. These mice were set up as tumor-bearing mice, and then ultrasound-guided polymers with different doses, including polyethylene glycol-poly 2-bromoethyl methacrylate (PEG-PBEMA) (Micelle group), free small molecules called l-ascorbyl palmitate (PA) (PA group), PA-micelle micellar particles (PA-Micelle group) prepared in the research, and phosphate buffer solution (PBS) (PBS group) were adopted. Besides, the growth of mice was recorded and compared after each operation. Meanwhile, different concentrations of PA-Micelle micellar particles and free small molecules of PA were added to the breast cancer cells of mice, and the concentration changes of glutathione (GSH) were detected to test the oxidation treatment ability of this method. According to the results of the experiment, the tumor volume of mice in the PA-Micelle group prepared in the research was the smallest followed by the PA group, and the tumor volume of mice in the Micelle group was the third smallest. The mice in the PBS group had the largest tumors among mice in all four groups. In oxidation treatment, the GSH concentration of mice in the PA-Micelle group was the lowest, while the GSH concentration of mice in the PA group was almost unchanged. The results of this experiment proved that the therapeutic effect of polymer nanocarriers in tumor chemotherapy and oxidation treatment was more significant than in traditional drug treatment.


Subject(s)
Neoplasms , Polymers , Female , Animals , Mice , Micelles , Chemoradiotherapy , Glutathione , Ultrasonography, Interventional
10.
bioRxiv ; 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36747803

ABSTRACT

The heterogeneity of the older population suggests the existence of subsets of individuals which share certain brain molecular features and respond differently to risk factors for Alzheimer's disease, but this population structure remains poorly defined. Here, we performed an unsupervised clustering of individuals with multi-region brain transcriptomes to assess whether a broader approach, simultaneously considering data from multiple regions involved in cognition would uncover such subsets. We implemented a canonical correlation-based analysis in a Discovery cohort of 459 participants from two longitudinal studies of cognitive aging that have RNA sequence profiles in three brain regions. 690 additional participants that have data in only one or two of these regions were used in the Replication effort. These clustering analyses identified two meta-clusters, MC-1 and MC-2. The two sets of participants differ primarily in their trajectories of cognitive decline, with MC-2 having a delay of 3 years to the median age of incident dementia. This is due, in part, to a greater impact of tau pathology on neuronal chromatin architecture and to broader brain changes including greater loss of white matter integrity in MC-1. Further evidence of biological differences includes a significantly larger impact of APOEε4 risk on cognitive decline in MC-1. These findings suggest that our proposed population structure captures an aspect of the more distributed molecular state of the aging brain that either enhances the effect of risk factors in MC-1 or of protective effects in MC-2. These observations may inform the design of therapeutic development efforts and of trials as both become increasingly more targeted molecularly. One Sentence Summary: There are two types of aging brains, with one being more vulnerable to APOEε4 and subsequent neuronal dysfunction and cognitive loss.

11.
Front Pharmacol ; 13: 1048728, 2022.
Article in English | MEDLINE | ID: mdl-36425583

ABSTRACT

Valproic acid (VPA) is widely used as a major drug in the treatment of epilepsy. Despite the undisputed pharmacological importance and effectiveness of VPA, its potential hepatotoxicity is still a major concern. Being a simple fatty acid, the hepatotoxicity induced by VPA has long been considered to be due primarily to its interference with fatty acid ß-oxidation (ß-FAO). The aim of this study was to investigate the biomarkers for VPA-induced abnormal liver function in epileptic children and to determine potential mechanisms of its liver injury. Targeted metabolomics analysis of acylcarnitines (ACs) was performed in children's serum. Metabolomic analysis revealed that VPA -induced abnormal liver function resulted in the accumulation of serum long-chain acylcarnitines (LCACs), and the reduced expression of ß-FAO relevant genes (Carnitine palmitoyltrans-ferase (CPT)1, CPT2 and Long-chain acyl-CoA dehydrogenase (LCAD)), indicating the disruption of ß-FAO. As direct peroxisome proliferator-activated receptor a (PPARα)- regulated genes, CPT1A, CPT2 and LCAD were up-regulated after treatment with PPARα agonist, fenofibrate (Feno), indicating the improvement of ß-FAO. Feno significantly ameliorated the accumulation of various lipids in the plasma of VPA-induced hepatotoxic mice by activating PPARα, significantly reduced the plasma ACs concentration, and attenuated VPA-induced hepatic steatosis. Enhanced oxidative stress and induced by VPA exposure were significantly recovered using Feno treatment. In conclusion, this study indicates VPA-induced ß-FAO disruption might lead to liver injury, and a significant Feno protective effect against VPA -induced hepatotoxicity through reversing fatty acid metabolism.

12.
Contrast Media Mol Imaging ; 2022: 3986646, 2022.
Article in English | MEDLINE | ID: mdl-36110978

ABSTRACT

In order to evaluate the diagnostic and prognostic value of echocardiography combined with serum creatine kinase-MB (CK-MB), albumin (Alb), and cystatin C (CysC) in patients with chronic heart failure (HF), 93 patients diagnosed with chronic HF in our hospital from March 2019 to January 2020 are retrospectively analyzed and included in the HF group. Another 100 healthy subjects who come to our hospital for general physical examination are selected as the control group. Echocardiography is used to detect the cardiac parameters of each group. The experimental results show that echocardiography parameters combined with CK-MB, Alb, and CysC have high application value in diagnosis and evaluation of patients with chronic HF, which can provide theoretical basis for improving the prognosis of patients with chronic HF through real-time monitoring of the above indicators.


Subject(s)
Cystatin C , Heart Failure , Albumins , Chronic Disease , Creatine Kinase, MB Form , Echocardiography , Heart Failure/diagnostic imaging , Humans , Prognosis , Retrospective Studies
13.
JMIR Med Inform ; 10(4): e29290, 2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35384854

ABSTRACT

BACKGROUND: Nowadays, intelligent medicine is gaining widespread attention, and great progress has been made in Western medicine with the help of artificial intelligence to assist in decision making. Compared with Western medicine, traditional Chinese medicine (TCM) involves selecting the specific treatment method, prescription, and medication based on the dialectical results of each patient's symptoms. For this reason, the development of a TCM-assisted decision-making system has lagged. Treatment based on syndrome differentiation is the core of TCM treatment; TCM doctors can dialectically classify diseases according to patients' symptoms and optimize treatment in time. Therefore, the essence of a TCM-assisted decision-making system is a TCM intelligent, dialectical algorithm. Symptoms stored in electronic medical records are mostly associated with patients' diseases; however, symptoms of TCM are mostly subjectively identified. In general electronic medical records, there are many missing values. TCM medical records, in which symptoms tend to cause high-dimensional sparse data, reduce algorithm accuracy. OBJECTIVE: This study aims to construct an algorithm model compatible for the multidimensional, highly sparse, and multiclassification task of TCM syndrome differentiation, so that it can be effectively applied to the intelligent dialectic of different diseases. METHODS: The relevant terms in electronic medical records were standardized with respect to symptoms and evidence-based criteria of TCM. We structuralized case data based on the classification of different symptoms and physical signs according to the 4 diagnostic examinations in TCM diagnosis. A novel cross-feature generation by convolution neural network model performed evidence-based recommendations based on the input embedded, structured medical record data. RESULTS: The data set included 5273 real dysmenorrhea cases from the Sichuan TCM big data management platform and the Chinese literature database, which were embedded into 60 fields after being structured and standardized. The training set and test set were randomly constructed in a ratio of 3:1. For the classification of different syndrome types, compared with 6 traditional, intelligent dialectical models and 3 click-through-rate models, the new model showed a good generalization ability and good classification effect. The comprehensive accuracy rate reached 96.21%. CONCLUSIONS: The main contribution of this study is the construction of a new intelligent dialectical model combining the characteristics of TCM by treating intelligent dialectics as a high-dimensional sparse vector classification task. Owing to the standardization of the input symptoms, all the common symptoms of TCM are covered, and the model can differentiate the symptoms with a variety of missing values. Therefore, with the continuous improvement of disease data sets, this model has the potential to be applied to the dialectical classification of different diseases in TCM.

14.
Alzheimers Dement ; 18(4): 688-699, 2022 04.
Article in English | MEDLINE | ID: mdl-34482628

ABSTRACT

Not all apolipoprotein E (APOE) ε4 carriers who survive to advanced age develop Alzheimer's disease (AD); factors attenuating the risk of ε4 on AD may exist. Guided by the top ε4-attenuating signals from methylome-wide association analyses (N = 572, ε4+ and ε4-) of neurofibrillary tangles and neuritic plaques, we conducted a meta-analysis for pathological AD within the ε4+ subgroups (N = 235) across four independent collections of brains. Cortical RNA-seq and microglial morphology measurements were used in functional analyses. Three out of the four significant CpG dinucleotides were captured by one principal component (PC1), which interacts with ε4 on AD, and is associated with expression of innate immune genes and activated microglia. In ε4 carriers, reduction in each unit of PC1 attenuated the odds of AD by 58% (odds ratio = 2.39, 95% confidence interval = [1.64,3.46], P = 7.08 × 10-6 ). An epigenomic factor associated with a reduced proportion of activated microglia (epigenomic factor of activated microglia, EFAM) appears to attenuate the risk of ε4 on AD.


Subject(s)
Alzheimer Disease , Apolipoprotein E4 , Alleles , Alzheimer Disease/pathology , Apolipoprotein E4/genetics , Apolipoproteins E/genetics , Epigenomics , Genotype , Humans , Microglia/pathology , Neurofibrillary Tangles/pathology
15.
Alzheimers Dement ; 18(10): 1797-1811, 2022 10.
Article in English | MEDLINE | ID: mdl-34873813

ABSTRACT

Identifying genes underlying memory function will help characterize cognitively resilient and high-risk declining subpopulations contributing to precision medicine strategies. We estimated episodic memory trajectories in 35,245 ethnically diverse older adults representing eight independent cohorts. We conducted apolipoprotein E (APOE)-stratified genome-wide association study (GWAS) analyses and combined individual cohorts' results via meta-analysis. Three independent transcriptomics datasets were used to further interpret GWAS signals. We identified DCDC2 gene significantly associated with episodic memory (Pmeta = 3.3 x 10-8 ) among non-carriers of APOE ε4 (N = 24,941). Brain transcriptomics revealed an association between episodic memory maintenance and (1) increased dorsolateral prefrontal cortex DCDC2 expression (P = 3.8 x 10-4 ) and (2) lower burden of pathological Alzheimer's disease (AD) hallmarks (paired helical fragment tau P = .003, and amyloid beta load P = .008). Additional transcriptomics results comparing AD and cognitively healthy brain samples showed a downregulation of DCDC2 levels in superior temporal gyrus (P = .007) and inferior frontal gyrus (P = .013). Our work identified DCDC2 gene as a novel predictor of memory maintenance.


Subject(s)
Alzheimer Disease , Memory, Episodic , Humans , Aged , Apolipoprotein E4/genetics , Genome-Wide Association Study , Amyloid beta-Peptides/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Transcriptome , Brain/metabolism , Apolipoproteins E/genetics , Microtubule-Associated Proteins
16.
Nat Commun ; 12(1): 7078, 2021 12 06.
Article in English | MEDLINE | ID: mdl-34873174

ABSTRACT

Identifying the effects of genetic variation on the epigenome in disease-relevant cell types can help advance our understanding of the first molecular contributions of genetic susceptibility to disease onset. Here, we establish a genome-wide map of DNA methylation quantitative trait loci in CD4+ T-cells isolated from multiple sclerosis patients. Utilizing this map in a colocalization analysis, we identify 19 loci where the same haplotype drives both multiple sclerosis susceptibility and local DNA methylation. We also identify two distant methylation effects of multiple sclerosis susceptibility loci: a chromosome 16 locus affects PRDM8 methylation (a chromosome 4 region not previously associated with multiple sclerosis), and the aggregate effect of multiple sclerosis-associated variants in the major histocompatibility complex influences DNA methylation near PRKCA (chromosome 17). Overall, we present a new resource for a key cell type in inflammatory disease research and uncover new gene targets for the study of predisposition to multiple sclerosis.


Subject(s)
CD4-Positive T-Lymphocytes/metabolism , DNA Methylation , Epigenome/genetics , Genetic Predisposition to Disease/genetics , Multiple Sclerosis/genetics , Quantitative Trait Loci/genetics , Adolescent , Adult , Cells, Cultured , Female , Genome-Wide Association Study/methods , Genotype , Haplotypes/genetics , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide , Young Adult
17.
Nat Commun ; 12(1): 7035, 2021 12 02.
Article in English | MEDLINE | ID: mdl-34857756

ABSTRACT

RNA editing is a feature of RNA maturation resulting in the formation of transcripts whose sequence differs from the genome template. Brain RNA editing may be altered in Alzheimer's disease (AD). Here, we analyzed data from 1,865 brain samples covering 9 brain regions from 1,074 unrelated subjects on a transcriptome-wide scale to identify inter-regional differences in RNA editing. We expand the list of known brain editing events by identifying 58,761 previously unreported events. We note that only a small proportion of these editing events are found at the protein level in our proteome-wide validation effort. We also identified the occurrence of editing events associated with AD dementia, neuropathological measures and longitudinal cognitive decline in: SYT11, MCUR1, SOD2, ORAI2, HSDL2, PFKP, and GPRC5B. Thus, we present an extended reference set of brain RNA editing events, identify a subset that are found to be expressed at the protein level, and extend the narrative of transcriptomic perturbation in AD to RNA editing.


Subject(s)
Alzheimer Disease/genetics , ORAI2 Protein/genetics , RNA Editing , RNA/genetics , Synaptotagmins/genetics , Transcriptome , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Atlases as Topic , Brain/metabolism , Brain/pathology , Brain Chemistry , Gene Expression Profiling , Humans , Hydroxysteroid Dehydrogenases/genetics , Hydroxysteroid Dehydrogenases/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , ORAI2 Protein/metabolism , Phosphofructokinase-1, Type C/genetics , Phosphofructokinase-1, Type C/metabolism , RNA/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Synaptotagmins/metabolism
18.
Transl Pediatr ; 10(9): 2313-2324, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34733672

ABSTRACT

BACKGROUND: The gut microbiome plays a potential role in clinical events in preterm infants and may affect their lateral development. Understanding the initial colonization of microbes in the gut, their early dynamic changes, and the major factors correlated with these changes would provide crucial information about the developmental process in early life. METHODS: The present study enrolled 151 preterm infants and examined the longitudinal dynamics of their fecal microbiome profiles during the period of hospitalization using 16S ribosomal RNA gene sequencing. Random forest modeling was used to predict postnatal age (Age), postmenstrual age (PMA), and gestational age (GA), using gut microbiome features. RESULTS: Principal coordinate analysis revealed that the gut microbiome of the preterm infants displayed an obvious time-dependent change pattern, which showed the strongest association with Age, followed by PMA, and a much weaker association with (GA). Random forest modeling further evidenced the time-dependent change pattern, with the Pearson's correlation coefficients between the actual values and the gut microbiome-predicted values being 0.68, 0.53, and 0.38 for postnatal, postmenstrual, and gestational age, respectively. The microbiome dynamism could be further divided into four Age stages, each with its own characteristic microbial taxa. The first 1-4 days (T1 stage) represented the meconium microbiome, with colonization of a high diversity of microbes before or during delivery. During 5-15 days (T2 stage), the gut microbiome of the preterm infants underwent a rapid turnover, in which microbial diversity declined, and stabilized afterward. Enterobacteriaceae, Enterococcaceae, Streptococcaceae, Staphylococcaceae, and Clostridiaceae were the major classes in the gut microbiome in the lateral stages of development (T3-T4 stage). CONCLUSIONS: Postnatal age, rather than the gestational age, is significantly correlated with the gut microbiome of preterm infants, suggesting that clinical interventions contribute more to the early dynamics of gut microbiome in preterm infants than the natural development of the gut.

19.
Ann Palliat Med ; 10(7): 8034-8042, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34353088

ABSTRACT

BACKGROUND: Percutaneous coronary intervention (PCI) has become increasingly mature and has gradually become the main treatment for coronary heart disease (CHD). However, evaluation of myocardial reperfusion after PCI remains a major clinical challenge. This study aimed to explore the VVI technique in evaluating the effect, prognosis, and follow-up of CHD patients after percutaneous coronary intervention. We performed a quantitative analysis of left ventricular myocardial contractile strain and dyssynchrony before and after stent implantation in patients by VVI. METHODS: Thirty-five patients diagnosed with CHD who underwent percutaneous coronary stenting (PCI) in the Department of Cardiovascular Medicine, Affiliated Hospital of Jiangnan University from March 2019 to October 2020 were selected as the case group. Continuous dynamic two-dimensional images of the patient's left ventricle were analyzed using VVI at 1 day before PCI (group A), 7 days after PCI (group B), and 30 days after PCI (group C). The patients' left ventricular end diastolic diameter (LVEDD), left ventricular end systolic diameter (LVESD), left ventricle ejection fraction (LVEF), peak longitudinal strain, and peak radial strain of myocardial contraction were measured. The VVI images of 35 healthy subjects who underwent physical examination in the outpatient department of our hospital from March 2019 to October 2020 were selected as controls. RESULTS: There were no significant differences in the LVEF, LVEDD, and LVESD between the case and control groups (P>0.05). The peak systolic longitudinal and radial strain values at 1 month after treatment were higher than those before treatment. The differences among myocardial segments were statistically significant, except for the apical septum, base anterior, apical anterior, and base inferior segments (P<0.05). The peak systolic longitudinal and radial strain values at 1 week after treatment were not significantly different from those at 1 month after treatment, except for the base anterior septum, mid anterior, posterior, and inferior myocardial segments (P>0.05). CONCLUSIONS: VVI technology can comprehensively and objectively evaluate the overall and local myocardial function of the left ventricle, thereby providing a novel method for the clinical treatment of CHD as well as the evaluation of curative effect and prognosis.


Subject(s)
Coronary Disease , Percutaneous Coronary Intervention , Heart Ventricles/diagnostic imaging , Humans , Stents , Ventricular Function, Left
20.
Epilepsy Res ; 176: 106728, 2021 10.
Article in English | MEDLINE | ID: mdl-34339940

ABSTRACT

OBJECTIVE: The pharmacokinetics of lamotrigine exhibits age-related characteristics. Nevertheless, current evidence regarding the therapeutic range of lamotrigine has been derived almost exclusively from studies in adult patients, and the applicability of this therapeutic range to the pediatric population remains unclear. The purpose of this study was to establish the appropriate age-specific therapeutic ranges of lamotrigine corresponding to adequate clinical responses for patients with epilepsy. METHODS: This prospective cohort study of therapeutic drug monitoring included 582 Chinese epilepsy patients receiving lamotrigine monotherapy. Patients were divided into three age-related subgroups: (1) toddler and school-age group (2-12 years old, n = 168), (2) adolescent group (12-18 years old, n = 171), and (3) adult group (>18 years old, n = 243). Patients with a reduction in seizure frequency of 50 % or greater than baseline were defined as responders, and the remaining patients were non-responders. The relationship between lamotrigine serum concentrations and clinical response was assessed using multivariate logistic regression analysis. A receiver operating characteristic curve was generated to determine the representative cut-off values of lamotrigine trough levels, to distinguish responders from non-responders. The upper margin of the therapeutic range of lamotrigine was determined by developing concentration-effect curves for the three age-related subgroups. RESULTS: The median trough levels of lamotrigine were significantly higher in responders than in non-responders from all three age-related groups (P < 0.0001). Results of logistic regression analysis revealed that higher serum concentrations of lamotrigine predicted a higher probability that seizure frequency would be reduced by more than 50 % compared to baseline (adjusted odds ratio: 1.228, 95 % CI: 1.137-1.327; P < 0.0001), and younger children were less likely to be responders (adjusted odds ratio: 1.027, 95 % CI: 1.012-1.043; P = 0.001). Based on a trade-off between sensitivity and specificity, the optimal cut-off values for lamotrigine trough concentrations corresponding to clinical response were 3.29 mg/L, 2.06 mg/L, and 1.61 mg/L in the toddler and school-age group, adolescent group, and adult group, respectively. By reducing interpatient variability, the results of the concentration-effect curves suggested no additional clinical benefit from a continued increase of doses for lamotrigine concentrations exceeding 9.08 mg/L, 8.43 mg/L, and 10.38 mg/L in the toddler and school-age group, adolescent group, and adult group, respectively. In conclusion, the therapeutic ranges of lamotrigine trough concentrations corresponding to adequate clinical response were 3.29-9.08 mg/L in the toddler and school-age group, 2.06-8.43 mg/L in the adolescent group, and 1.61-10.38 mg/L in the adult group. CONCLUSIONS: The study determined age-specific therapeutic ranges corresponding to optimal clinical efficacy for lamotrigine. Our findings lay the foundation for catalyzing novel opportunities to optimize treatment and reduce therapeutic costs. Based on the age-specific therapeutic ranges identified in this study, individualized and cost-effective algorithms for lamotrigine treatment of epilepsy patients may be developed and validated in larger cohort studies of therapeutic drug monitoring.


Subject(s)
Epilepsy , Triazines , Adolescent , Adult , Age Factors , Anticonvulsants/adverse effects , Child , Child, Preschool , Cost-Benefit Analysis , Epilepsy/chemically induced , Epilepsy/drug therapy , Humans , Lamotrigine/therapeutic use , Prospective Studies , Triazines/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...